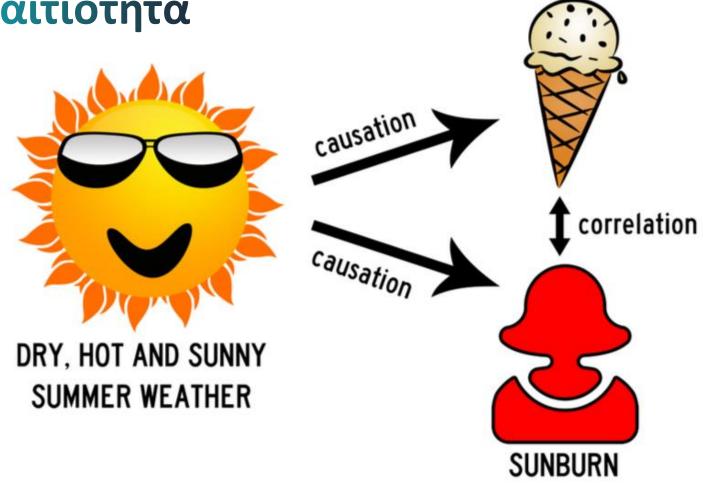


Σύγκρουση συμφερόντων

Καμία για την παρουσίαση αυτή.

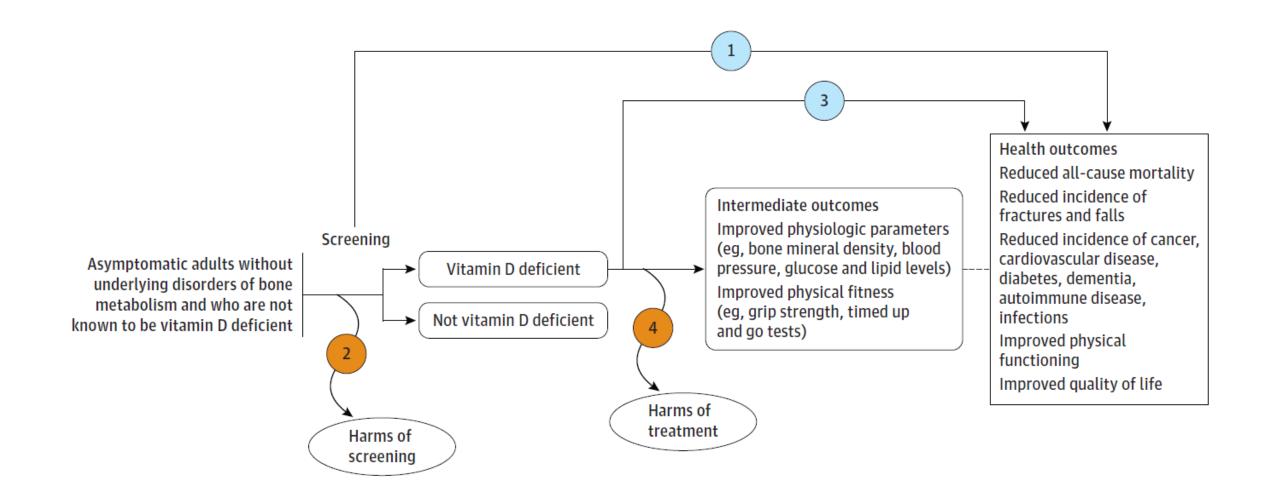
"Knowing is not enough; we must apply. Willing is not enough; we must do."

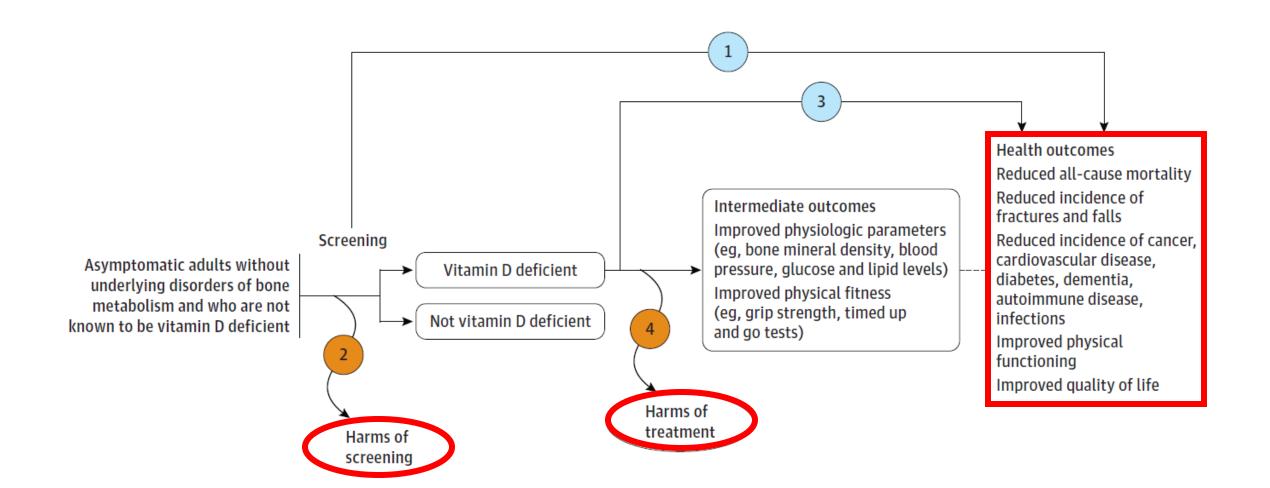
—Goethe


Relative risk Relative risk Outcome No of events/ No of Comparison studies (95% CI) (95% CI) total 250HD Aggressive prostate cancer⁷⁶ 0.98 (0.84 to 1.15) 871/4524 Per 10 ng/mL Breast cancer¹⁰¹ 11 771/26 317 21 Quarters 0.55 (0.42 to 0.71) Postmenopausal breast cancer 105 3929/8766 Per 5 ng/mL 0.99 (0.97 to 1.01) Pre-menopausal breast cancer 105 1613/2890 1.01 (0.97 to 1.06) 6 Per 5 ng/mL Colon cancer³⁵ 1822/4578 0.78 (0.56 to 1.07) 10 Categories Colorectal cancer⁷⁹ 2764/6712 10 Categories 0.70 (0.58 to 0.84) Kidney cancer⁷⁴ 740/1480 6 ≥75 v 50-75 nmol/L 1.01 (0.65 to 1.58) Non-Hodgkin's lymphoma⁸⁶ 18/39 4 >100 v 50-75 nmol/L 0.81 (0.39 to 1.70) Non-Hodgkin's lymphoma⁸⁶ 25/65 6 >100 v 50-75 nmol/L 0.65 (0.35 to 1.23) Ovarian cancer96 884/2489 10 Per 20 ng/mL 0.83 (0.63 to 1.09) Pancreatic cancer⁸⁸ 866/2113 6 >100 v 50-75 nmol/L 2.13 (1.02 to 4.47) Prostate cancer⁷⁶ 4353/28 988 14 Per 10 ng/mL 1.04 (0.98 to 1.09) Rectal cancer³⁵ 9 868/2050 Categories 0.50 (0.29 to 0.88) Sporadic cancer⁹⁵ 2923/6268 Per 20 ng/mL 0.82 (0.69 to 0.97) Sporadic cancer recurrence⁹⁵ 586/1366 3 Per 20 ng/mL 0.87 (0.57 to 1.33) Cardiovascular disease 102 6123/66 488 19 Categories 0.66 (0.57 to 0.77) Cardiovascular disease (prevalent)83 -/6472216 Categories 0.67 (0.55 to 0.82) Cardiovascular disease mortality78 2007/24 387 5 0.55 (0.36 to 0.85) Categories Hypertension 104 4965/48 633 0.70 (0.58 to 0.86) Categories Ischaemic heart disease⁶⁶ 8376/82 982 19 0.72 (0.65 to 0.81) Quarters Ischaemic stroke (hazard ratio)100 1800/26 596 Quarters 0.66 (0.55 to 0.80) Ischaemic stroke (odds ratio)100 0.52 (0.44 to 0.61) 844/31 858 5 Quarters Stroke⁸⁹ 0.61 (0.50 to 0.75) 1214/39 095 Categories Alzheimer's disease99 357/1005 Per SD 0.08 (0.01 to 0.63) Cognition⁷¹ 1217/9004 Ouarters 0.42 (0.34 to 0.53) Depression⁹⁸ 2051/19 807 <50 v > 50 nmol/L 0.77 (0.59 to 1.00) Depression⁹⁸ <50 v >50 nmol/L 0.44 (0.27 to 0.72) 617/8815 3 Tuberculosis82 308/534 Per SD 0.29 (0.19 to 0.46) Metabolic syndrome (prevalent)83 -/314168 Categories 0.49 (0.38 to 0.64) Type 2 diabetes 103 4877/72 204 16 Categories 0.63 (0.56 to 0.69) Type 2 diabetes (prevalent)83 -/11892Categories 0.45 (0.25 to 0.82) Small for gestational age36 -/6851Categories 0.54 (0.44 to 0.67) Gestational diabetes36 687/4112 10 Categories 0.67 (0.53 to 0.85) Pre-eclampsia36 393/3230 9 Categories 0.56 (0.39 to 0.80) Fractures⁹¹ 1572/2956 28 Per SD 0.31 (0.23 to 0.42) Mortality in chronic kidney disease patients84 2110/6853 10 Per 10 ng/mL -0.86 (0.81 to 0.92) All cause mortality66 18 15 447/77 155 Quarters 0.72 (0.66 to 0.78) 1.25(OH)2D Aggressive prostate cancer⁷⁶ 696/1488 Per 10 ng/mL 2 0.75 (0.48 to 1.17) Breast cancer⁶⁸ 1802/3627 3 Categories 0.99 (0.68 to 1.44) Colon cancer³⁵ -/-Categories 0.88 (0.57 to 1.35) Colorectal cancer³⁵ -/-Categories 1.01 (0.59 to 1.73) Prostate cancer⁷⁶ 1361/3640 Per 10 ng/mL 0.99 (0.87 to 1.14) 0.2 0.4 0.5 0.6 1.5 2 2.5

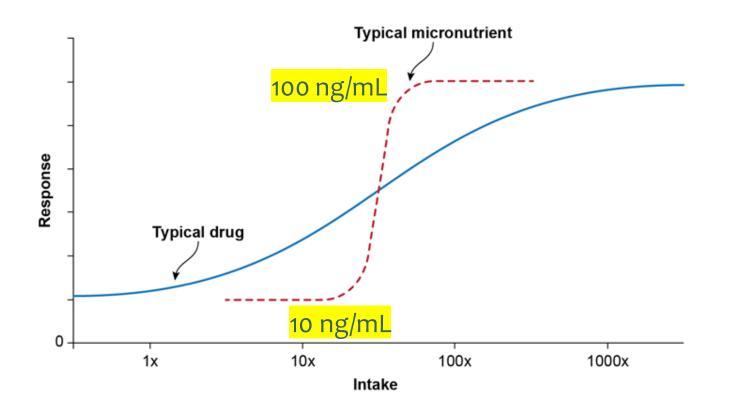
Health outcomes associated with vit D

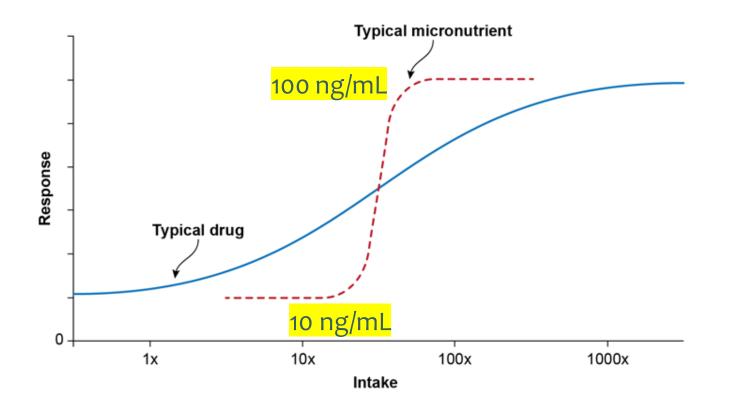
Meta-analyses of observational studies stratified by measured biomarker with relative risk as type of metric


Theodoratou, BMJ 2014


Συσχέτιση δεν σημαίνει αιτιότητα

ICE CREAM

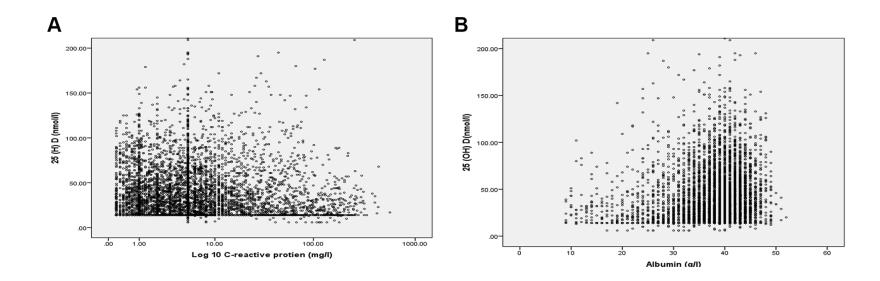


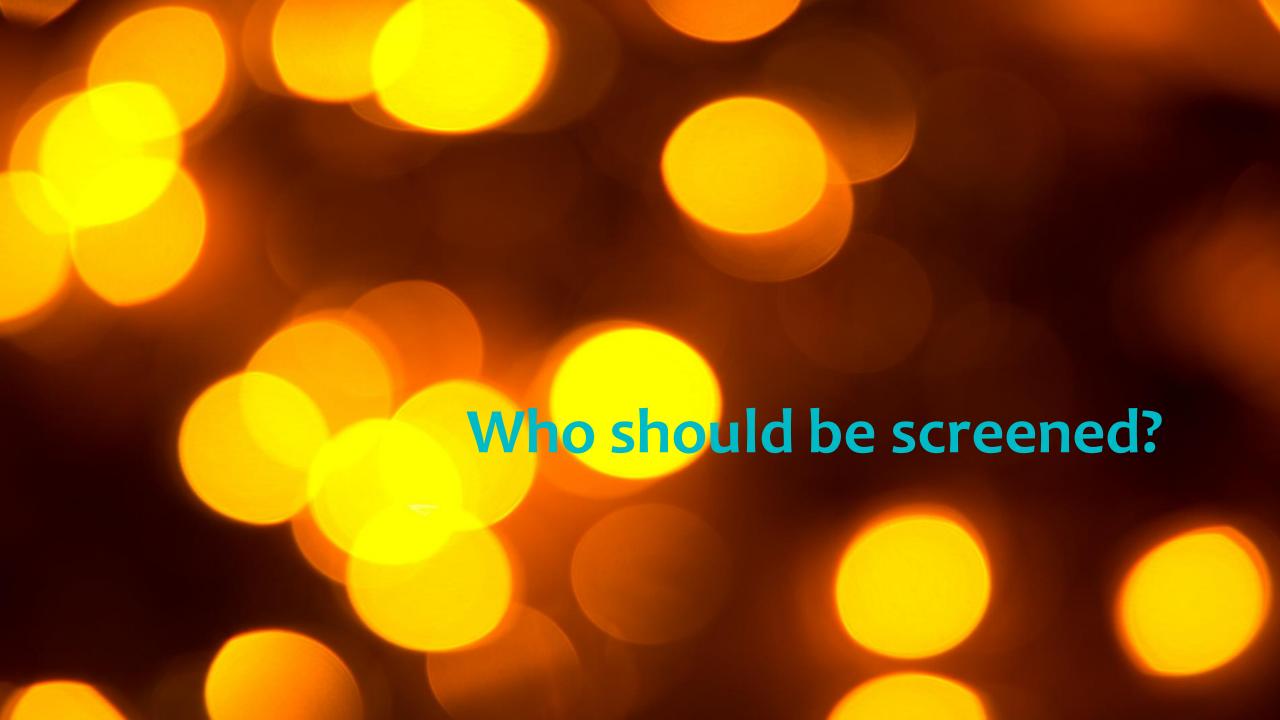

Limitations of RCTs, observational studies and metaanalyses

- 1. Wrong dose (too high or too low)
- 2. Wrong part of the dose-response curve
- 3. Low compliance rate
- 4. Contamination (placebo group)
- 5. Wrong part of natural history
- 6. Insufficient duration

Καμπύλη δόσηςανταπόκρισης Φάρμακα νς συμπληρώματα θρεπτικών συστατικών

Vitamin D: Moving Toward Evidence-based Decision Making in Primary Care December 2-3, 2014 Summary of Conference Presentations and Discussions, NIH


Καμπύλη δόσηςανταπόκρισης Φάρμακα νς συμπληρώματα θρεπτικών συστατικών


Vitamin D: Moving Toward Evidence-based Decision Making in Primary Care December 2-3, 2014 Summary of Conference Presentations and Discussions, NIH

Dose to maintain 10 ng/mL: 1000 IU/day

Vit D is a negative acute phase reactant

Ghushut, Plos One 2014

Who should be screened?

All individuals at risk (not everyone)

Those more likely to benefit from vit D supplementation

TABLE 2. Indications for 25(OH)D measurement (candidates for screening)

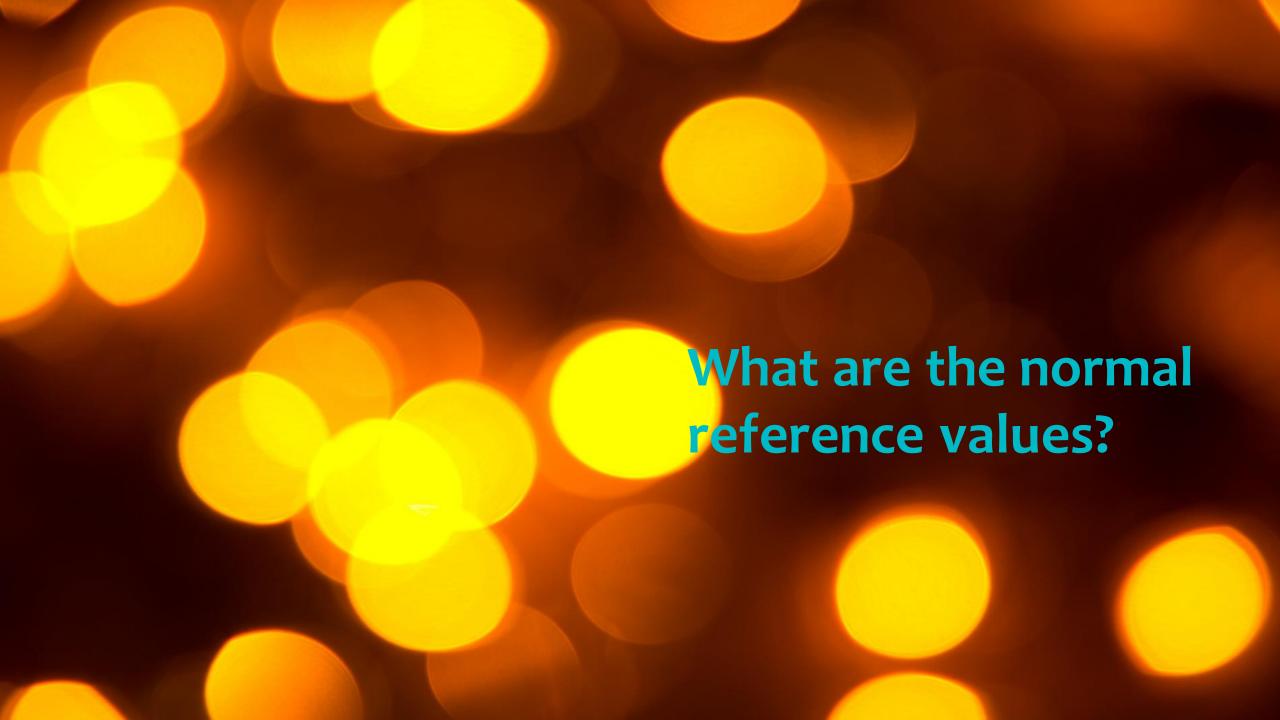
Rickets Osteomalacia Osteoporosis Chronic kidney disease Hepatic failure Malabsorption syndromes Cystic fibrosis Inflammatory bowel disease Crohn's disease Bariatric surgery Radiation enteritis Hyperparathyroidism Medications Antiseizure medications Glucocorticoids AIDS medications Antifungals, e.g. ketoconazole Cholestyramine African-American and Hispanic children and adults Pregnant and lactating women Older adults with history of falls Older adults with history of nontraumatic fractures Obese children and adults (BMI $> 30 \text{ kg/m}^2$) Granuloma-forming disorders Sarcoidosis Tuberculosis Histoplasmosis Coccidiomycosis Berylliosis Some lymphomas

US Endocrine Society guideline, Holick et al, J Clin Endocrinol Metabol 2011

Use 25 (OH) D for screening, rather than total vit D or 1,25 (OH)2 D

Use 1,25 (OH)2 D only in:

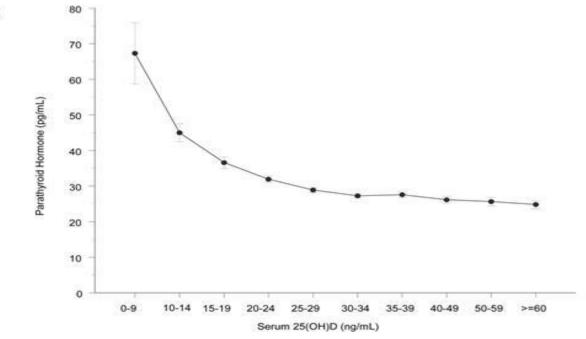
chronic kidney disease,

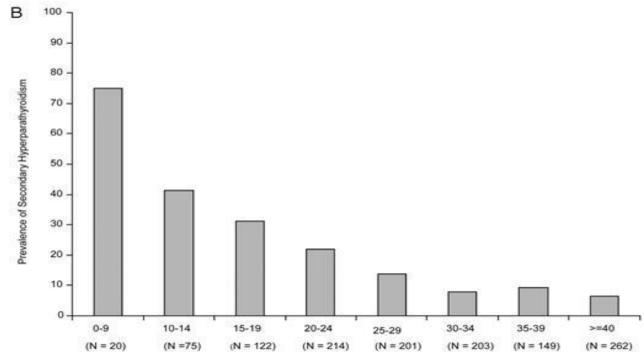

hereditary phosphate-losing disorders,

oncogenic osteomalacia,

pseudovitamin D-deficiency rickets,

vitamin D-resistant rickets,

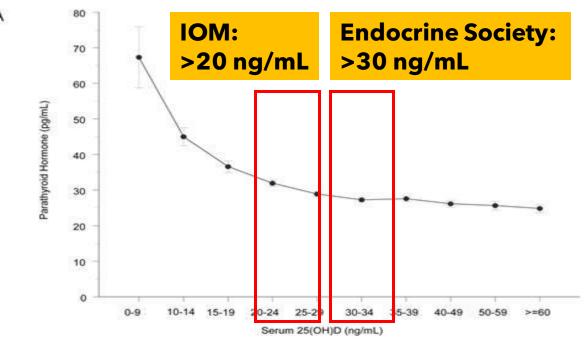

Chronic granuloma forming disorders such as sarcoidosis and some lymphomas

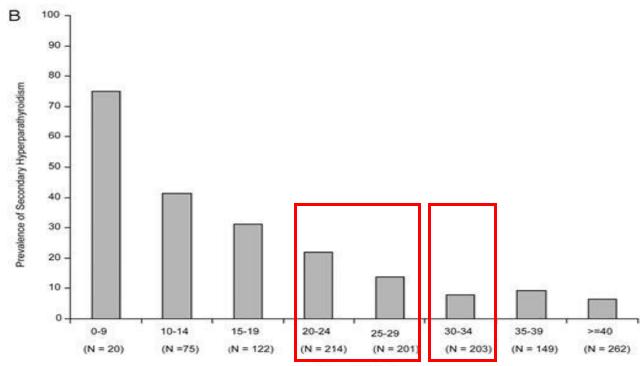


Normal reference values

Physiologic

The 25(OH)D3 concentration that allows for better calcium absorption and lower PTH stimulation

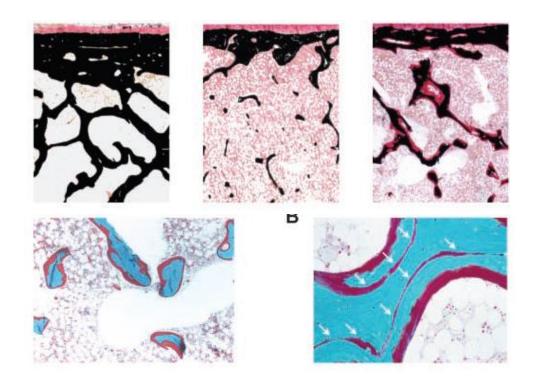


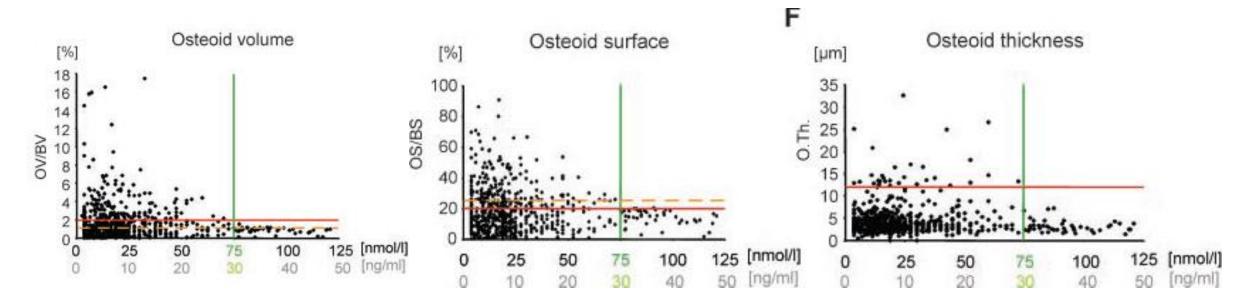


Normal reference values

Physiologic

The 25(OH)D3 concentration that allows for better calcium absorption and lower PTH stimulation

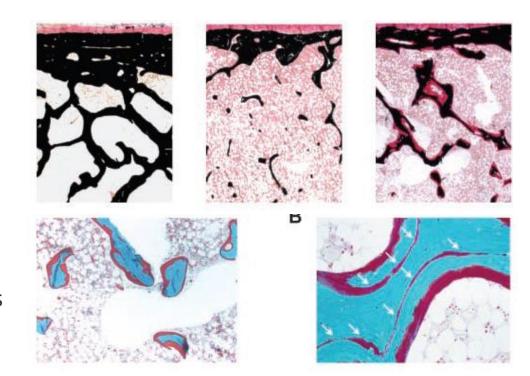


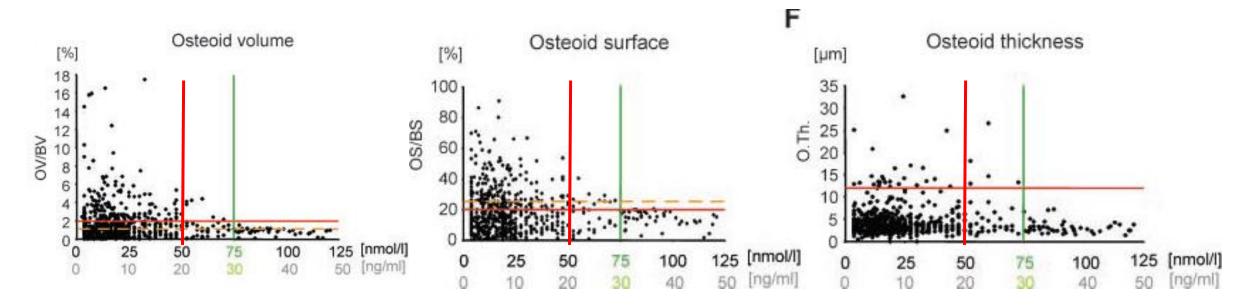

Serum 25(OH)D

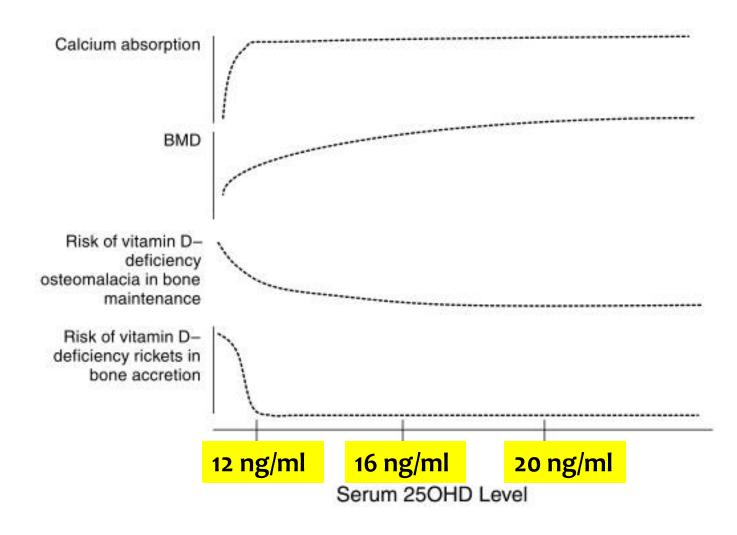
Bone mineralization defects in relation to 25 (OH)D3 levels in 675 iliac crest biopsies.

Priemel, J Bone Mineral Res 2010

While there is no threshold under which mineralization defects appear, no mineralization defects are evident with 25(OH)D3 levels of 30 ng/ml and higher

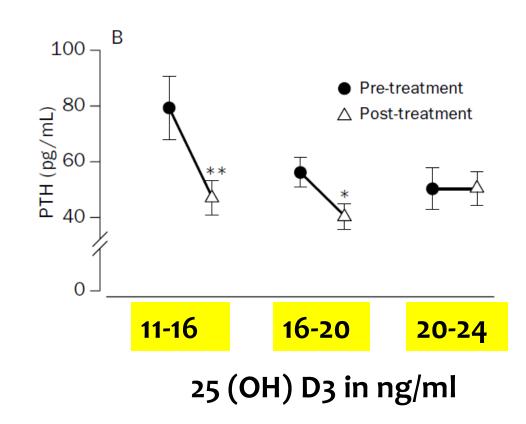





Bone mineralization defects in relation to 25 (OH)D3 levels in 675 iliac crest biopsies.

Priemel, J Bone Mineral Res 2010

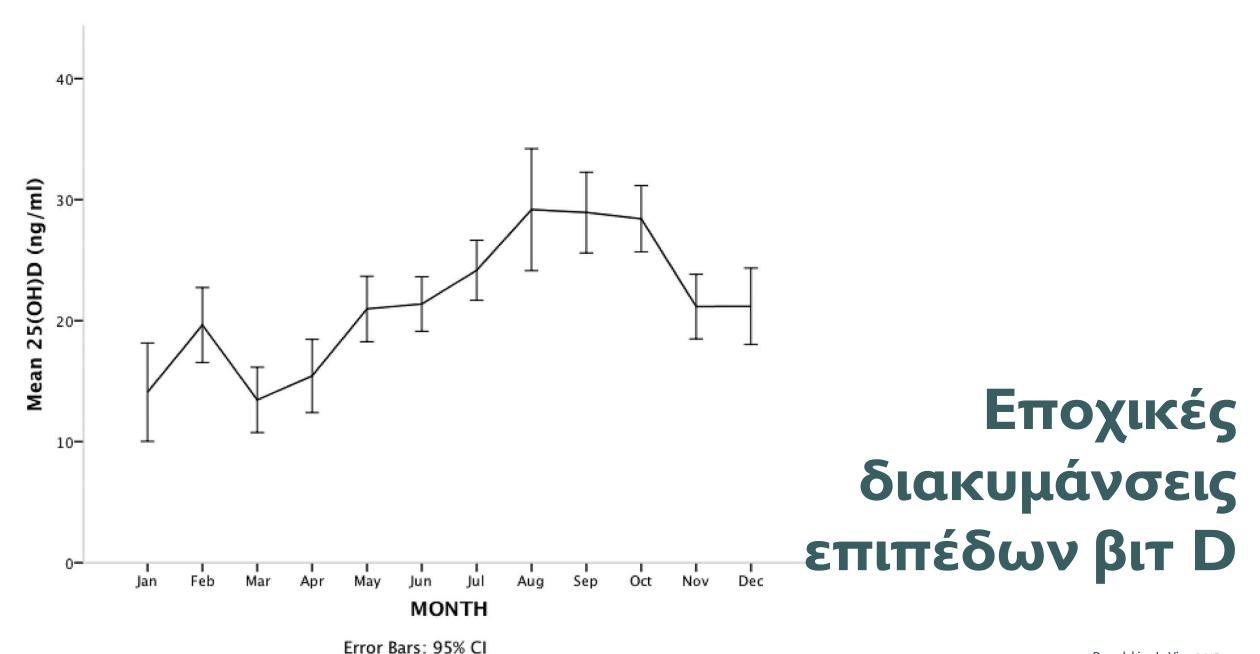
While there is no threshold under which mineralization defects appear, no mineralization defects are evident with 25(OH)D3 levels of 30 ng/ml and higher


Conceptualization of integrated bone health outcomes and vitamin D exposure.

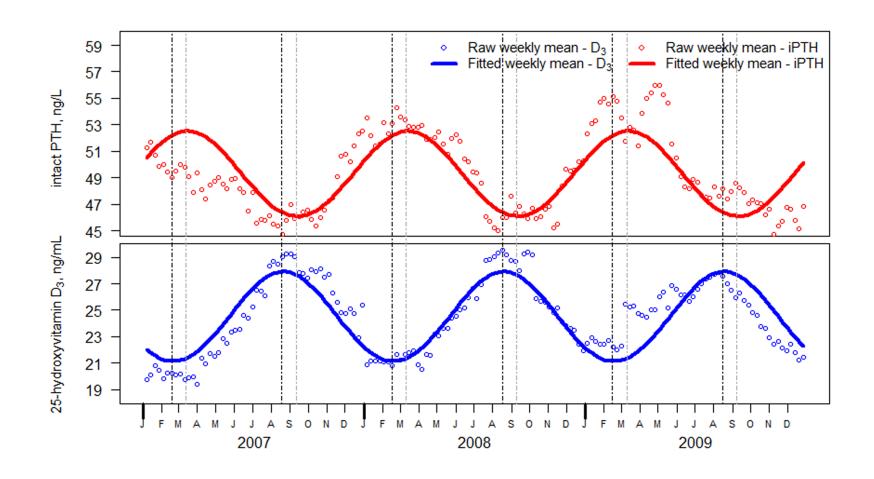
IOM Guideline

Dietary Reference Intakes for Calcium and Vitamin D

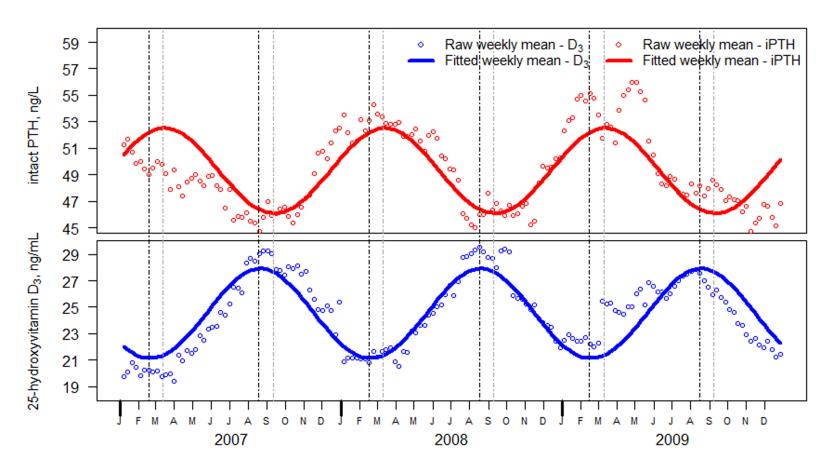
Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium; Editors: A Catharine Ross, Christine L Taylor, Ann L Yaktine, and Heather B Del Valle. Washington (DC): National Academies Press (US); 2011.


A minimum of 20 ng/ml is required to achieve optimum PTH levels

Relations between 25(OH)D and PTH before and after therapy with 50 000 IU of vitamin D, and calcium supplementation once a week for 8 weeks


Normal reference values

	Endocrine society	IOM
Normal	>30 ng/mL	20-50 ng/mL
Insufficient	21-29 ng/mL	12-20 ng/mL
Deficient	<20 mg/mL	<12 ng/mL



Papadakis, In Vivo 2015

Εποχικές διακυμάνσεις

Εποχικές διακυμάνσεις

Εχει σημασία η διακύμανση της PTH;

Who should be treated?

Rickets/ osteomalacia

Osteoporosis

Secondary hyperparathyroidism, due to low vit D

Deficiency (<20 ng/ml? Or <12 ng/ml?)

Patients at high risk of falls? (with calcium)

Frail, elderly patients with muscle weakness?

Institunionalised, elderly patients

Malabsorbing states

Vit D deficiency

50000 IU D3 / week for 8 weeks

Or

6000 IU / day

To achieve a 25(OH)D level of >30 ng/ml

Followed by maintenance therapy

1500-2000 IU / day

TABLE 3. Vitamin D intakes recommended by the IOM and the Endocrine Practice Guidelines Committee

Life stage	IOM recommendations				Committee recommendations for patients at risk for vitamin D deficiency	
group	Al	EAR	RDA	UL	Daily requirement	UL
Infants						
0 to 6 months	400 IU (10 μg)			1,000 IU (25 μg)	400-1,000 IU	2,000 IU
6 to 12 months	400 IU (10 μg)			1,500 IU (38 μg)	400-1,000 IU	2,000 IU
Children						
1–3 yr		400 IU (10 μg)	600 IU (15 μ g)	2,500 IU (63 μg)	600-1,000 IU	4,000 IU
4–8 yr		400 IU (10 μg)	600 IU (15 μ g)	3,000 IU (75 μg)	600-1,000 IU	4,000 IU
Males						
9–13 yr		400 IU (10 μg)	600 IU (15 μg)	4,000 IU (100 μg)	600-1,000 IU	4,000 IU
14–18 yr		400 IU (10 μg)	600 IU (15 μg)	4,000 IU (100 μg)	600-1,000 IU	4,000 IU
19–30 yr		400 IU (10 μg)	600 IU (15 μg)	4,000 IU (100 μg)	1,500-2,000 IU	10,000 IU
31–50 yr		400 IU (10 μg)	600 IU (15 μ g)	4,000 IU (100 μg)	1,500-2,000 IU	10,000 IU
51–70 yr		400 IU (10 μg)	600 IU (15 μg)	4,000 IU (100 μg)	1,500-2,000 IU	10,000 IU
>70 yr		400 IU (10 μg)	800 IU (20 μg)	4,000 IU (100 μg)	1,500-2,000 IU	10,000 IU
Females						
9–13 yr		400 IU (10 μg)	600 IU (15 μg)	4,000 IU (100 μg)	600-1,000 IU	4,000 IU
14–18 yr		400 IU (10 μg)	600 IU (15 μg)	4,000 IU (100 μg)	600-1,000 IU	4,000 IU
19–30 yr		400 IU (10 μg)	600 IU (15 μg)	4,000 IU (100 μg)	1,500-2,000 IU	10,000 IU
31–50 yr		400 IU (10 μg)	600 IU (15 μg)	4,000 IU (100 μg)	1,500-2,000 IU	10,000 IU
51–70 yr		400 IU (10 μg)	600 IU (15 μg)	4,000 IU (100 μg)	1,500-2,000 IU	10,000 IU
>70 yr		400 IU (10 μg)	800 IU (20 μg)	4,000 IU (100 μg)	1,500-2,000 IU	10,000 IU
Pregnancy		400 /40 ->	COO III /4E -\	4.000 /4.00 ->	COO 1 000 III	4.000.111
14–18 yr		400 IU (10 μg)	600 IU (15 μg)	4,000 IU (100 μg)	600-1,000 IU	4,000 IU
19–30 yr		400 IU (10 μg)	600 IU (15 μg)	4,000 IU (100 μg)	1,500-2,000 IU	10,000 IU
31–50 yr		400 IU (10 μg)	600 IU (15 μg)	4,000 IU (100 μg)	1,500-2,000 IU	10,000 IU
Lactation ^a		400 /10 -\	600 III /1F -\	4.000 1./400 -\	600 1 000 !!!	4.000 !!!
14–18 yr		400 IU (10 μg)	600 IU (15 μg)	4,000 IU (100 μg)	600-1,000 IU	4,000 IU
19–30 yr		400 IU (10 μg)	600 IU (15 μg)	4,000 IU (100 μg)	1,500 –2,000 IU	10,000 IU
31–50 yr		400 IU (10 μg)	600 IU (15 μg)	4,000 IU (100 μg)	1,500–2,000 IU	10,000 IU

Al, Adequate intake; EAR, estimated average requirement; UL, tolerable upper intake level.

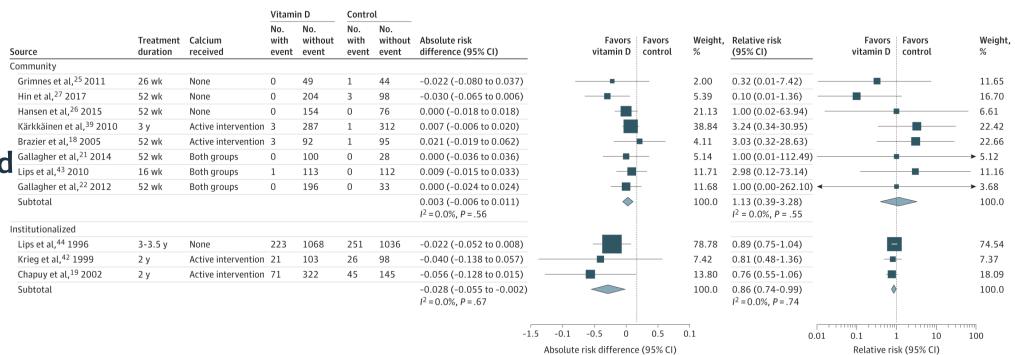
^a Mother's requirement, 4,000–6,000 IU/d (mother's intake for infant's requirement if infant is not receiving 400 IU/d).

TABLE 3. Vitamin D intakes recommended by the IOM and the Endocrine Practice Guidelines Committee

Life stage	IOM recommendations			Committee recommendations for patients at risk for vitamin D deficiency		
group	Al	EAR	RDA	UL	Daily requirement	UL
Infants					-	
0 to 6 months	400 IU (10 μg)			1,000 IU (25 μg)	400-1,000 IU	2,000 IU
6 to 12 months	400 IU (10 μg)			1,500 IU (38 μg)	400-1,000 IU	2,000 IU
Children						
1–3 yr		400 IU (10 μg)	600 IU (15 μg)	2,500 IU (63 μg)	600-1,000 IU	4,000 IU
4–8 yr		400 IU (10 μg)	600 IU (15 µg)	3,000 IU (75 μg)	600-1,000 IU	4,000 IU
Males						
9–13 yr		400 IU (10 μg)	600 IU (15 μg)	4,000 IU (100 μg)	600-1,000 IU	4,000 IU
14–18 yr		400 IU (10 μg)	600 IU (15 μa)	4,000 IU (100 μg)	600-1.000 IU	4,000 IU
19–30 yr		400 IU (10 μg)	600 IU (15 μg)	4,000 IU (100 μg)	1,500-2,000 IU	10,000 IU
31–50 yr		400 IU (10 μg)	600 IU (15 μg)	4,000 IU (100 μg)	1,500-2,000 IU	10,000 IU
51–70 yr		400 IU (10 μg)	600 IU (15 μg)	4,000 IU (100 μg)	1,500-2,000 IU	10,000 IU
>70 yr		400 IU (10 μg)	800 IU (20 μg)	4,000 IU (100 μg)	1,500-2,000 IU	10,000 IU
Females						
9–13 yr		400 IU (10 μg)	600 IU (15 μg)	4,000 IU (100 μg)	600-1,000 IU	4,000 IU
14–18 yr		400 IU (10 μg)	600 IU (15 μα)	4,000 IU (100 μg)	600-1,000 IU	4,000 IU
19–30 yr		400 IU (10 μg)	600 IU (15 μg)	4,000 IU (100 μg)	1,500-2,000 IU	10,000 IU
31–50 yr		400 IU (10 μg)	600 IU (15 μg)	4,000 IU (100 μg)	1,500-2,000 IU	10,000 IU
51–70 yr		400 IU (10 μg)	600 IU (15 μg)	4,000 IU (100 μg)	1,500-2,000 IU	10,000 IU
>70 yr		400 IU (10 μg)	800 IU (20 μg)	4,000 IU (100 μg)	1,500-2,000 IU	10,000 IU
Pregnancy		400 /10>	COO III /1F -\	4.000 1./400>	COO 1 000 III	4.000.111
14–18 yr		400 IU (10 μg)	600 IU (15 μg)	4,000 IU (100 μg)	600-1,000 IU	4,000 IU
19–30 yr		400 IU (10 μg)	600 IU (15 μg)	4,000 IU (100 μg)	1,500-2,000 IU	10,000 IU
31–50 yr		400 IU (10 μg)	600 IU (15 μg)	4,000 IU (100 μg)	1,500-2,000 IU	10,000 IU
Lactation ^a		400 III (10 ···~)	600 III /1E a\	4.000 1./100~\	600 1 000 111	4 000 111
14–18 yr		400 IU (10 μg)	600 IU (15 μg)	4,000 IU (100 μg)	600-1,000 IU	4,000 IU
19–30 yr		400 IU (10 μg)	600 IU (15 μg)	4,000 IU (100 μg)	1,500-2,000 IU	10,000 IU
31–50 yr		400 IU (10 μg)	600 IU (15 μg)	4,000 IU (100 μg)	1,500-2,000 IU	10,000 IU

AI, Adequate intake; EAR, estimated average requirement; UL, tolerable upper intake level.

^a Mother's requirement, 4,000–6,000 IU/d (mother's intake for infant's requirement if infant is not receiving 400 IU/d).



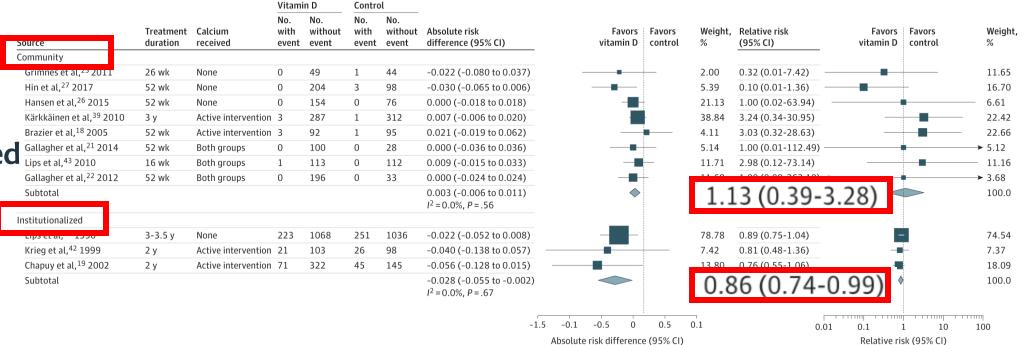
From: Screening for Vitamin D Deficiency in Adults: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force

JAMA. 2021;325(14):1443-1463. doi:10.1001/jama.2020.26498

Effect on community-dwelling or institutionalized asymptomatic populations-mortality

Figure Legend:

Date of download: 5/2/2022


Effect of Vitamin D Treatment on Mortality Stratified by SettingSize of each data marker indicates the weight of the study in the analysis. Weights are from random-effects analysis. To calculate the absolute risk difference in percentage points, multiply value by 100 (eg. 0.009 multiplied by 100 = 0.9 percentage points).

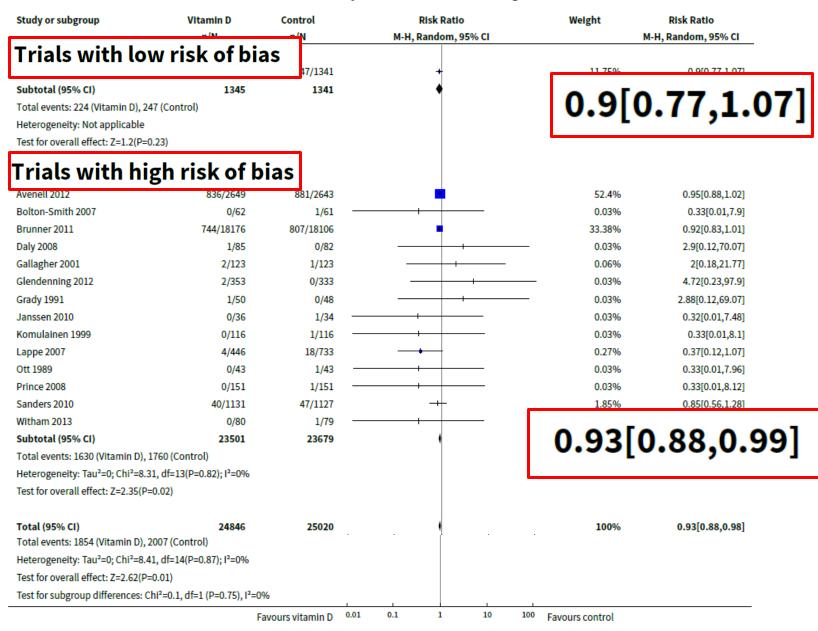
From: Screening for Vitamin D Deficiency in Adults: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force

JAMA. 2021;325(14):1443-1463. doi:10.1001/jama.2020.26498

communitydwelling or institutionalized asymptomatic populationsmortality

Figure Legend:

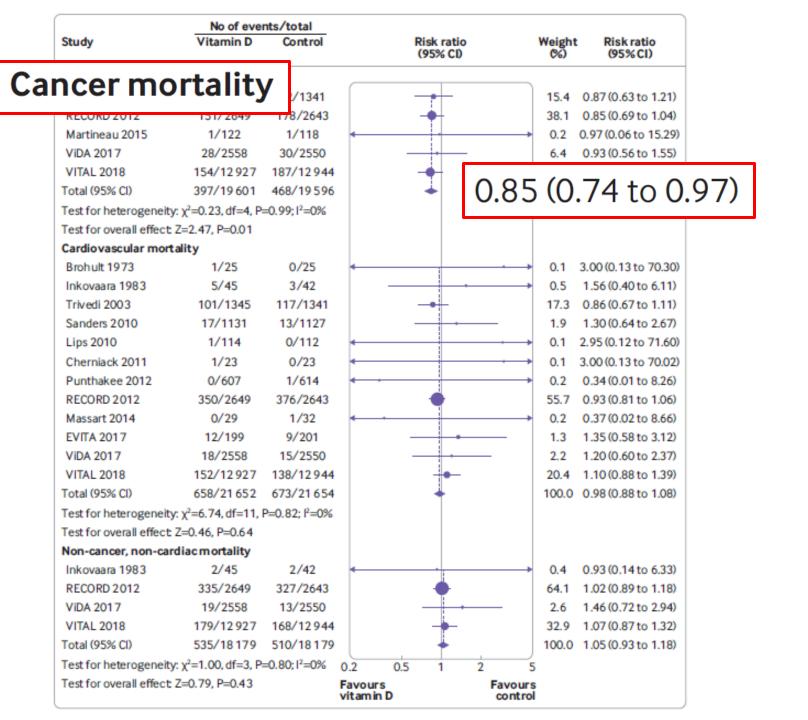
Date of download: 5/2/2022


Effect of Vitamin D Treatment on Mortality Stratified by SettingSize of each data marker indicates the weight of the study in the analysis. Weights are from random-effects analysis. To calculate the absolute risk difference in percentage points, multiply value by 100 (eg, 0.009 multiplied by 100 = 0.9 percentage points).

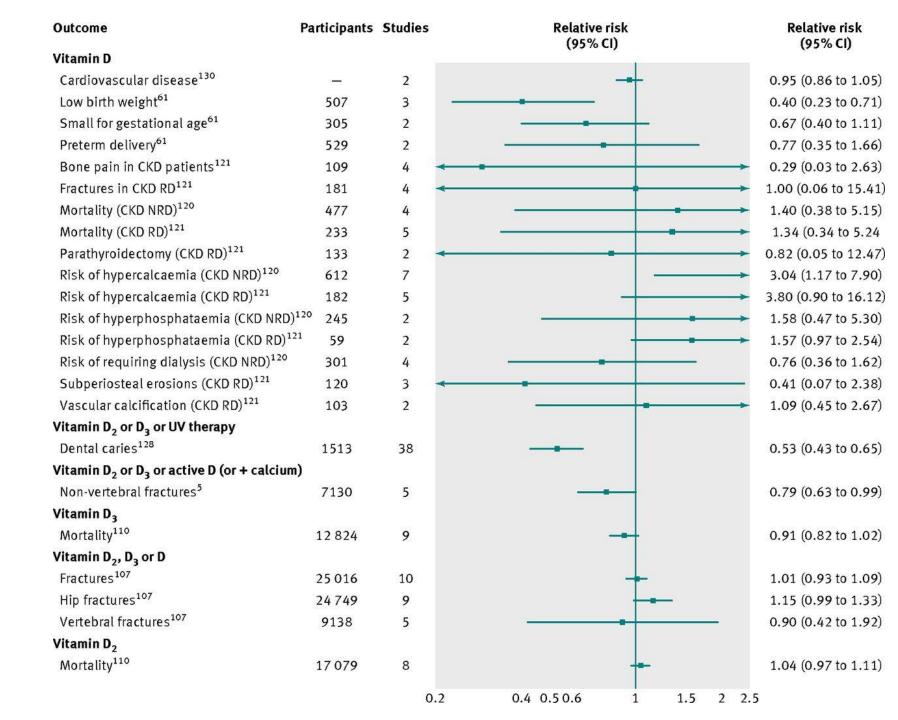
Analysis 1.23. Comparison 1 Vitamin D versus placebo or no intervention, Outcome 23 All-cause mortality in trials with a low or high risk of bias.

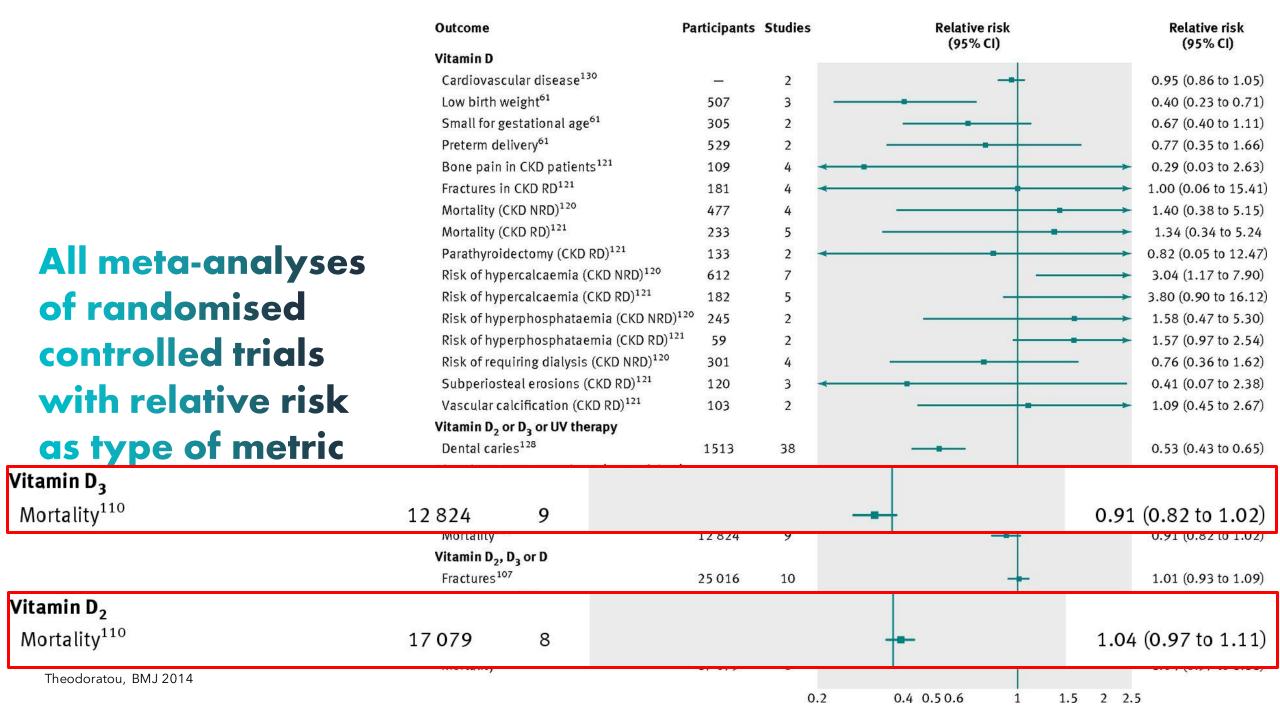
Study or subgroup	Vitamin D	Control	Risk Ratio	Welght	Risk Ratio		
	n/N	n/N	M-H, Random, 95% CI		M-H, Random, 95% CI		
1.23.1 Trials with low risk of bia	s						
Trivedi 2003	224/1345	247/1341	+	11.75%	0.9[0.77,1.07]		
Subtotal (95% CI)	1345	1341	•	11.75%	0.9[0.77,1.07]		
Total events: 224 (Vitamin D), 247	(Control)						
Heterogeneity: Not applicable							
Test for overall effect: Z=1.2(P=0.2	3)						
1.23.2 Trials with high risk of bia	as						
Avenell 2012	836/2649	881/2643	•	52.4%	0.95[0.88,1.02]		
Bolton-Smith 2007	0/62	1/61 —		0.03%	0.33[0.01,7.9]		
Brunner 2011	744/18176	807/18106	•	33.38%	0.92[0.83,1.01]		
Daly 2008	1/85	0/82		0.03%	2.9[0.12,70.07]		
Gallagher 2001	2/123	1/123		0.06%	2[0.18,21.77]		
Glendenning 2012	2/353	0/333	+	0.03%	4.72[0.23,97.9]		
Grady 1991	1/50	0/48		- 0.03%	2.88[0.12,69.07]		
Janssen 2010	0/36	1/34 —		0.03%	0.32[0.01,7.48]		
Komulainen 1999	0/116	1/116 —		0.03%	0.33[0.01,8.1]		
Lappe 2007	4/446	18/733		0.27%	0.37[0.12,1.07]		
Ott 1989	0/43	1/43 —		0.03%	0.33[0.01,7.96]		
Prince 2008	0/151	1/151 —		0.03%	0.33[0.01,8.12]		
Sanders 2010	40/1131	47/1127	+	1.85%	0.85[0.56,1.28]		
Witham 2013	0/80	1/79 —		0.03%	0.33[0.01,7.96]		
Subtotal (95% CI)	23501	23679	•	88.25%	0.93[0.88,0.99]		
Total events: 1630 (Vitamin D), 17	60 (Control)						
Heterogeneity: Tau ² =0; Chi ² =8.31,	df=13(P=0.82); I ² =0%						
Test for overall effect: Z=2.35(P=0.	02)						
Total (95% CI)	24846	25020	•	100%	0.93[0.88,0.98]		
Total events: 1854 (Vitamin D), 200	07 (Control)	•		•			
Heterogeneity: Tau ² =0; Chi ² =8.41,	df=14(P=0.87); I ² =0%						
Test for overall effect: Z=2.62(P=0.	01)						
Test for subgroup differences: Chi	² =0.1, df=1 (P=0.75), I ² =0	%					

community-dwelling or intitutionalized asymptomatic populations-mortality

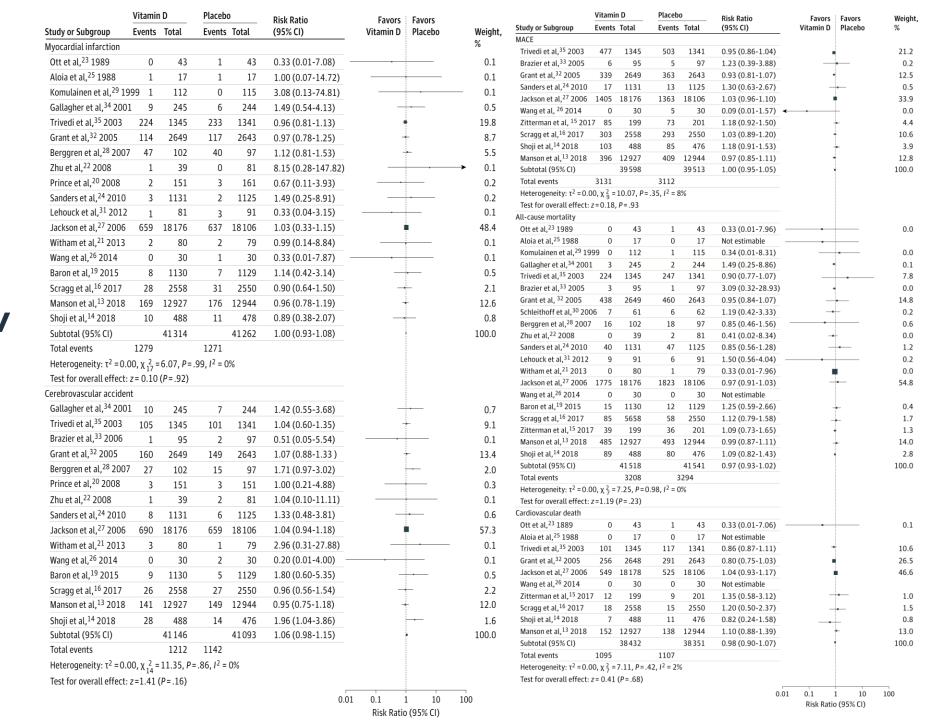

Analysis 1.23. Comparison 1 Vitamin D versus placebo or no intervention, Outcome 23 All-cause mortality in trials with a low or high risk of bias.

community-dwelling or intitutionalized asymptomatic populations-mortality

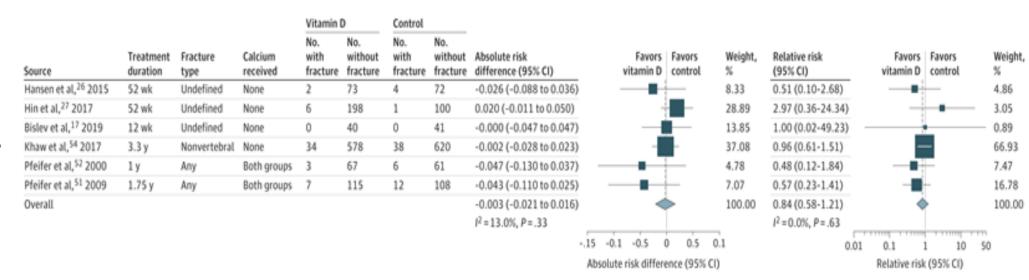

	No of eve	nts/total			
Study	Vitamin D	Control	Risk ratio (95% CI)	Weight %)	Risk ratio (95% CI)
Cancer mortality					
Trivedi 2003	63/1345	72/1341		15.4	0.87 (0.63 to 1.21)
RECORD 2012	151/2649	178/2643	<u>-</u> →	38.1	0.85 (0.69 to 1.04)
Martineau 2015	1/122	1/118	4	→ 0.2	0.97 (0.06 to 15.29)
VIDA 2017	28/2558	30/2550		6.4	0.93 (0.56 to 1.55)
VITAL 2018	154/12927	187/12944	-	39.9	0.82 (0.67 to 1.02)
Total (95% CI)	397/19601	468/19596	4	100.0	0.85 (0.74 to 0.97)
Test for heterogeneity	y: χ ² =0.23, df=4, P	=0.99; l ² =0%			
Test for overall effect	Z=2.47, P=0.01				
Cardiovascular mort	ality				
Brohult 1973	1/25	0/25	4	→ 0.1	3.00 (0.13 to 70.30)
Inkovaara 1983	5/45	3/42		→ 0.5	1.56 (0.40 to 6.11)
Trivedi 2003	101/1345	117/1341		17.3	0.86 (0.67 to 1.11)
Sanders 2010	17/1131	13/1127		- 1.9	1.30 (0.64 to 2.67)
Lips 2010	1/114	0/112	4	→ 0.1	2.95 (0.12 to 71.60)
Cherniack 2011	1/23	0/23	4	→ 0.1	3.00 (0.13 to 70.02)
Punthakee 2012	0/607	1/614	 	→ 0.2	0.34 (0.01 to 8.26)
RECORD 2012	350/2649	376/2643	•	55.7	0.93 (0.81 to 1.06)
Massart 2014	0/29	1/32	4 +	→ 0.2	0.37 (0.02 to 8.66)
EVITA 2017	12/199	9/201	-	1.3	1.35 (0.58 to 3.12)
VIDA 2017	18/2558	15/2550		2.2	1.20 (0.60 to 2.37)
VITAL 2018	152/12927	138/12944	-	20.4	1.10 (0.88 to 1.39)
Total (95% CI)	658/21652	673/21654	+	100.0	0.98 (0.88 to 1.08)
Test for heterogeneity	y: χ ² =6.74, df=11,	P=0.82; l²=0%			
Test for overall effect	Z=0.46, P=0.64				
Non-cancer, non-car	diac mortality				
Inkovaara 1983	2/45	2/42	4	→ 0.4	0.93 (0.14 to 6.33)
RECORD 2012	335/2649	327/2643		64.1	1.02 (0.89 to 1.18)
VIDA 2017	19/2558	13/2550	-	- 2.6	1.46 (0.72 to 2.94)
VITAL 2018	179/12927	168/12944		32.9	1.07 (0.87 to 1.32)
Total (95% CI)	535/18179	510/18179	+	100.0	1.05 (0.93 to 1.18)
Test for heterogeneity	y: χ ² =1.00, df=3, P	=0.80; I ² =0%	0.2 0.5 1 2	5	
Test for overall effect	Z=0.79, P=0.43			Favours	
			vitam in D	control	


Mortality by cause (cancer, CV, else)

Mortality by cause (cancer, CV, else)


All meta-analyses of randomised controlled trials with relative risk as type of metric

CV outcomes


(MACE, All-cause mortality, CV death, cerebrovascular accident, myocardial infarction)

JAMA. 2021;325(14):1443-1463. doi:10.1001/jama.2020.26498

Effect on community-dwelling, asymptomatic populations-any fractures

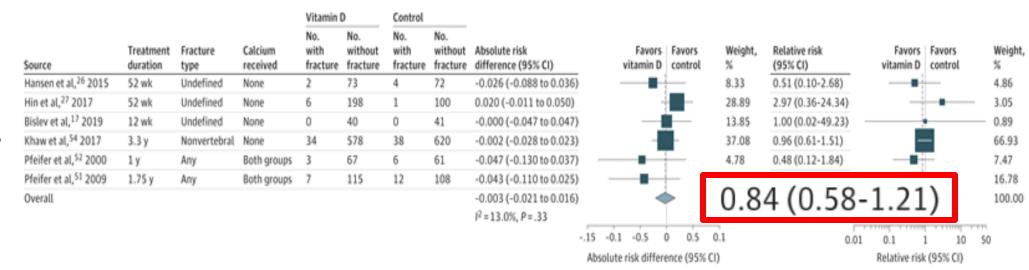
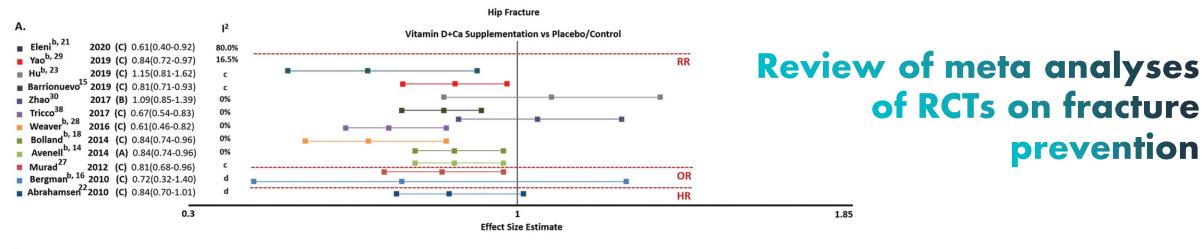
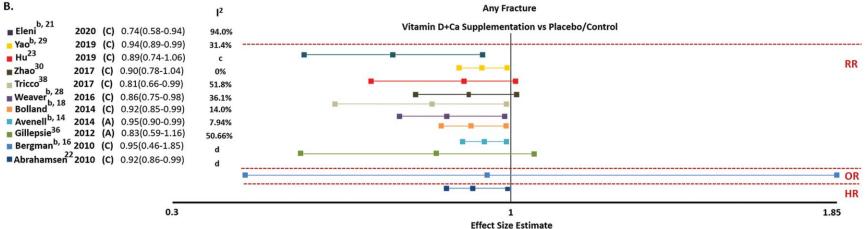


Figure Legend:



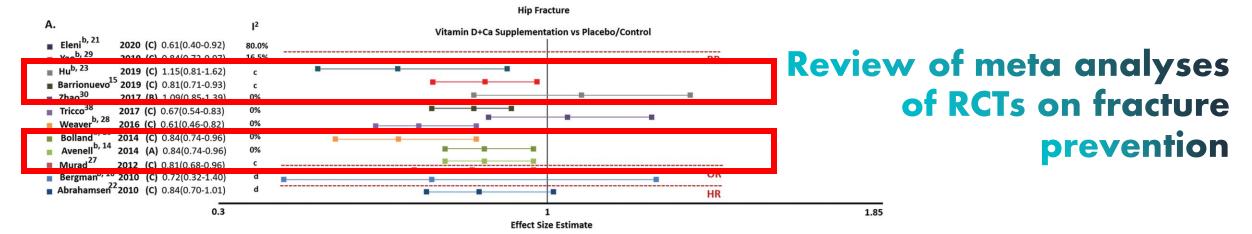

JAMA. 2021;325(14):1443-1463. doi:10.1001/jama.2020.26498

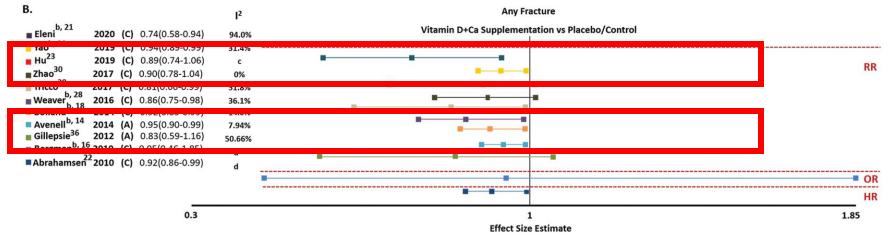
Effect on community-dwelling, asymptomatic populations-any fractures

Figure Legend:

Quality Assessment Using the AMSTAR-2 Tool: (A)-Moderate Quality; (B)-Low Quality; (C)-Critically Low Quality

a: Abbreviations: RR: Risk Ratio, OR: Odds Ratio, HR: Hazard Ratio


b: Meta-Analysis including institutionalized trials


c: Network Meta-Analysis

d: Not available

of RCTs on fracture

prevention

Fracture risk reduction is possibly driven by effect on institunionalized individuals

Quality Assessment Using the AMSTAR-2 Tool: (A)-Moderate Quality; (B)-Low Quality; (C)-Critically Low Quality

a: Abbreviations: RR: Risk Ratio, OR: Odds Ratio, HR: Hazard Ratio

b: Meta-Analysis including institutionalized trials

c: Network Meta-Analysis

d: Not available

JAMA. 2021;325(14):1443-1463. doi:10.1001/jama.2020.26498

Effect on communitydwelling, asymptomatic populationsfalls (incidence of falls)

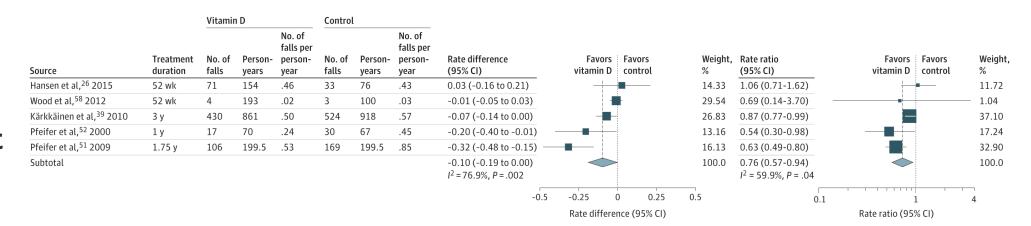

			Vitam	in D	Contro	ol								
Source	Treatment duration	Calcium received	No. with event	No. without event	No. with event	No. without event	Absolute risk difference (95% CI)	Favors vitamin D	Favors control	Weight, %	Relative risk (95% CI)	Favors vitamin D		Weight, %
Hin et al, ²⁷ 2017	1 y	None	34	170	14	87	0.028 (-0.057 to 0.113)	+		19.09	1.20 (0.68-2.14)	-+		→ 7.61
Khaw et al, ⁵⁴ 2017	3.3 y	None	307	295	316	338	0.027 (-0.029 to 0.082)	-		22.45	1.06 (0.94-1.18)	-		30.19
Shea et al, ⁵⁷ 2019	1 y	None	14	35	13	38	0.031 (-0.143 to 0.205)	-	-	10.34	1.12 (0.59-2.14)		•	→ 6.34
Kärkkäinen et al, ³⁹ 2010	3 y	Active intervention	179	108	205	101	-0.046 (-0.123 to 0.031)		<u></u>	20.00	0.93 (0.83-1.05)	-	ŀ	29.68
Pfeifer et al, ⁵¹ 2009	1.75 y	Both groups	49	72	75	46	-0.215 (-0.338 to -0.092)			14.78	0.65 (0.51-0.84)	-		20.12
Pfeifer et al, ⁵² 2000	1 y	Both groups	11	59	19	48	-0.126 (-0.264 to 0.011)		<u> </u>	13.35	0.55 (0.29-1.08)	-	<u>.</u>	6.06
Subtotal							-0.043 (-0.116 to 0.029)		>	100.0	0.90 (0.75-1.08)		>	100.0
							$I^2 = 70.1\%$, $P = .005$			_	I ² = 66.8%, P = .01			_
							-(0.4 -0.3 -0.2 -0.1	0 0.1 0.2	0.3	0.2		$\overset{\scriptscriptstyle{1}}{1}$	2
								Absolute risk differ	ence (95% CI)			Relative risk (95%	CI)	

Figure Legend:

JAMA. 2021;325(14):1443-1463. doi:10.1001/jama.2020.26498

Effect on community-dwelling, asymptomatic populations-falls (number of falls)

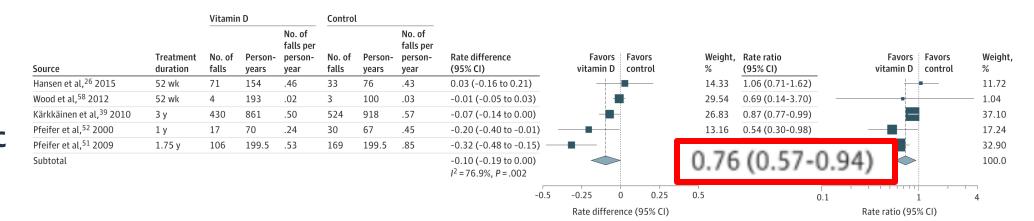


Figure Legend:

JAMA. 2021;325(14):1443-1463. doi:10.1001/jama.2020.26498

Effect on community-dwelling, asymptomatic populations-falls (number of falls)

Figure Legend:

Table 1. Components of Interventions to Prevent Falls							
Intervention Component	Abbreviation						
Basic falls risk assessment	bf						
Calcium	ca						
Cognitive behavioral therapy	cb						
Clinic-level quality improvement	cl-qi						
Comprehensive podiatry assessment and treatment	ср						
Device-alarm	de-al						
Device—hip protector	de-hp						
Device-orthosis	de-or						
Dietary modifications	di						
Environmental assessment and modification	ea						
Electromagnetic field therapy and whole-body vibration	em + wb						
Exercise	ex						
Flooring	fl						
Lavender	la						
Multifactorial assessment and treatment	mf						
Osteoporosis treatment	op-tx						
Patient-level quality improvement	pa-qi						
Social engagement	SO						
Surgery—cataract	su-ey						
Surgery-hip	su-hi						
Surgery—pacemaker	su-pm						
Health system-level quality improvement	sy-qi						
Usual care	uc						
Vision assessment and treatment	va						
Vitamin D	vi-d						

Fall prevention is a multifactorial task

Tricco, JAMA 2017

Box 2. Interventions Associated With Reduction of Outcome Compared With Usual Care in Network Meta-analysis

Outcomes

Number of Injurious Falls

Exercise

Combined exercise and vision assessment and treatment

Combined exercise, vision assessment and treatment, and environmental assessment and modification

Combined clinic-level quality improvement strategies, multifactorial assessment and treatment, calcium supplementation, and vitamin D supplementation

Number of Fallers

Exercise

Combined exercise, patient-level quality improvement strategies, clinic-level quality improvement strategies, and multifactorial assessment and treatment

Combined exercise, patient-level quality improvement strategies, hip protectors, and environmental assessment and modification

Combined patient-level quality improvement strategies, clinic-level quality improvement strategies, dietary modifications, calcium supplementation, and vitamin D supplementation

Combined orthotics and exercise

Number of Fractures

Combined osteoporosis treatment, calcium supplementation, and vitamin D supplementation

Number of Hip Fractures

Combined osteoporosis treatment, calcium supplementation, and vitamin D supplementation

Fall prevention is a multifactorial task

Analysis 1.1. Comparison 1 Vitamin D versus placebo or no intervention, Outcome 1 Cancer occurrence in trials with a low or high risk of bias.

Study or subgroup	Vitamin D	Control	Risk Ratio	Welght	Risk Ratio
	n/N	n/N	M-H, Random, 95% CI		M-H, Random, 95% CI
1.1.1 Trials with low risk of b	las				
Trivedi 2003	188/1345	173/1341	+	9.83%	1.08[0.89,1.31]
Wood 2012	2/203	1/102		0.06%	1[0.09,10.95]
Subtotal (95% CI)	1548	1443	*	9.89%	1.08[0.89,1.31]
Total events: 190 (Vitamin D), 1	174 (Control)				
Heterogeneity: Tau²=0; Chi²=0	, df=1(P=0.95); I ² =0%				
Test for overall effect: Z=0.82(F	P=0.41)				
1.1.2 Trials with high risk of l	blas				
Avenell 2012	369/2649	354/2643	+	19.76%	1.04[0.91,1.19]
Bolton-Smith 2007	1/62	0/61		0.04%	2.95[0.12,71.09]
Brunner 2011	1306/18176	1333/18106		67.19%	0.98[0.91,1.05]
Daly 2008	4/85	3/82		0.17%	1.29[0.3,5.57]
Gallagher 2001	6/123	5/123		0.27%	1.2[0.38,3.83]
Glendenning 2012	19/353	15/333	-	0.83%	1.19[0.62,2.31]
Grady 1991	1/50	0/48		0.04%	2.88[0.12,69.07]
Janssen 2010	0/36	1/34 —	+	0.04%	0.32[0.01,7.48]
Komulainen 1999	2/116	3/116		0.12%	0.67[0.11,3.92]
Lappe 2007	13/446	37/733	-	0.94%	0.58[0.31,1.07]
Larsen 2012	1/65	0/65		0.04%	3[0.12,72.31]
Murdoch 2012	4/161	1/161		0.08%	4[0.45,35.4]
Ott 1989	1/43	0/43		0.04%	3[0.13,71.65]
Prince 2008	1/151	5/151		0.08%	0.2[0.02,1.69]
Sanders 2010	7/1131	10/1127		0.39%	0.7[0.27,1.83]
Witham 2013	2/80	2/79		0.1%	0.99[0.14,6.84]
Subtotal (95% CI)	23727	23905	+	90.11%	0.99[0.93,1.05]
Total events: 1737 (Vitamin D)	, 1769 (Control)				
Heterogeneity: Tau ² =0; Chi ² =1	0.84, df=15(P=0.76); I ² =0%				
Test for overall effect: Z=0.42(I	P=0.67)				
Total (95% CI)	25275	25348		1[0.	94,1.06
Total events: 1927 (Vitamin D)	, 1943 (Control)				, =
Heterogeneity: Tau ² =0; Chi ² =1	1.66, df=17(P=0.82); I ² =0%				
Test for overall effect: Z=0.14(F	P=0.88)				
Test for subgroup differences:	Chi ² =0.82, df=1 (P=0.36), I ² =	0%			

Effect on community-dwelling, asymptomatic populations-cancer incidence

Meta analyses: methodological considerations

Do not preclude effect on patient subgroups (elderly, frail, institutionalized individuals etc.)

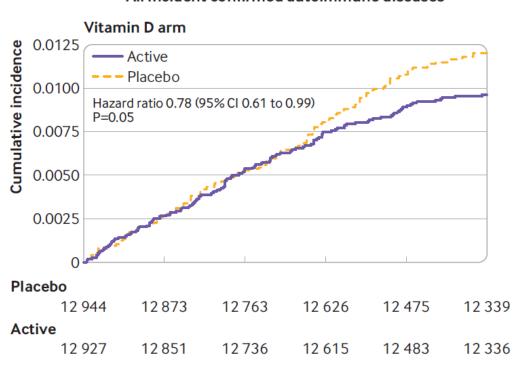
Overlapping populations

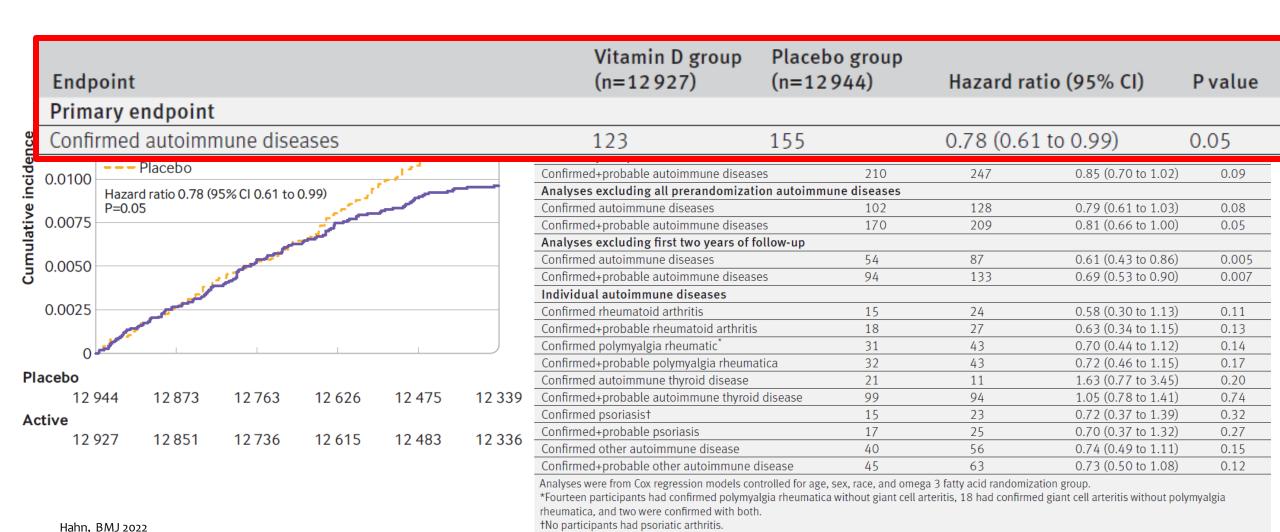
Different inclusion criteria reflect different populations and methods

Outcome definitions and analytic approaches

Vit D supplementation may reduce risk of incident autoimmune disease- The VITAL trial

All incident confirmed autoimmune diseases




Table 2 | Hazard ratios and 95% confidence intervals for primary and secondary endpoints according to randomized assignment to vitamin D or placebo

Endpoint	Vitamin D group (n=12927)	Placebo group (n=12944)	Hazard ratio (95% CI)	Pvalue
Primary endpoint				
Confirmed autoimmune diseases	123	155	0.78 (0.61 to 0.99)	0.05
Secondary endpoints				
Confirmed+probable autoimmune diseases	210	247	0.85 (0.70 to 1.02)	0.09
Analyses excluding all prerandomization autoimmu	ine diseases			
Confirmed autoimmune diseases	102	128	0.79 (0.61 to 1.03)	0.08
Confirmed+probable autoimmune diseases	170	209	0.81 (0.66 to 1.00)	0.05
Analyses excluding first two years of follow-up				
Confirmed autoimmune diseases	54	87	0.61 (0.43 to 0.86)	0.005
Confirmed+probable autoimmune diseases	94	133	0.69 (0.53 to 0.90)	0.007
Individual autoimmune diseases				
Confirmed rheumatoid arthritis	15	24	0.58 (0.30 to 1.13)	0.11
Confirmed+probable rheumatoid arthritis	18	27	0.63 (0.34 to 1.15)	0.13
Confirmed polymyalgia rheumatic*	31	43	0.70 (0.44 to 1.12)	0.14
Confirmed+probable polymyalgia rheumatica	32	43	0.72 (0.46 to 1.15)	0.17
Confirmed autoimmune thyroid disease	21	11	1.63 (0.77 to 3.45)	0.20
Confirmed+probable autoimmune thyroid disease	99	94	1.05 (0.78 to 1.41)	0.74
Confirmed psoriasist	15	23	0.72 (0.37 to 1.39)	0.32
Confirmed+probable psoriasis	17	25	0.70 (0.37 to 1.32)	0.27
Confirmed other autoimmune disease	40	56	0.74 (0.49 to 1.11)	0.15
Confirmed+probable other autoimmune disease	45	63	0.73 (0.50 to 1.08)	0.12
	1			

Analyses were from Cox regression models controlled for age, sex, race, and omega 3 fatty acid randomization group.

^{*}Fourteen participants had confirmed polymyalgia rheumatica without giant cell arteritis, 18 had confirmed giant cell arteritis without polymyalgia rheumatica, and two were confirmed with both.

Vit D supplementation may reduce risk of incident autoimmune disease- The VITAL trial

All meta-analyses: **reduced** mortality from cancer

Most meta-analyses: reduced falls (with Ca)

Probably **reduce** fractures (with Ca)

No effect on extra-skeletal outcomes (cancer incidence, infections, CV disease or death)

Summary

Final considerations

Screen individuals at risk (not everyone)

Treat accordingly

Uncertain health benefits beyond musculoskeletal system

Consider outcomes in the long-term: low treatment adherence, unknown long-term benefits and harms

